FLSCC 2018–19 Officers

Chair
Marisa Bailey-Furlonge
FlscChair@gmail.com

Chair-elect
Peter Toth
pt@mccanda.com

Secretary
Vanessa Thomas
Vanessa@freelanceformulations.com

Treasurer
Stephen Dawes
stephen@aigtechnologies.net

Treasurer-elect
Arthur Vallejo
avallejo@custoblad.com

Area IV Directors
Dennis Abbadduto
dennis@colonialchem.com

Stan Milstein
OCACS8@msn.com

Newsletter Editor
Tania Robles
Flscnewsletter@gmail.com

Advertising
Marisa Bailey-Furlonge
marisa@naturalskincare.com

RSVP to Chapter Meetings
stephen@aigtechnologies.net

Contacts

Website
http://www.flscc.org

SCC National Office
120 Wall Street
Ste 2400
New York, NY 10005-4088
(212) 668-1500
FAX (212) 668-1504
email: scc@scconline.org

2019 Sunscreen Symposium Call for Papers

Welcoming all topics related to Cosmetic Science with an emphasis on sun protection, antiaging and skin cancer research

SUBMISSION DEADLINES:
Abstract & Presenter Bio for Podium Presentations January 30th, 2019

Poster Presentations March 15th, 2019

Please submit your abstract to FLSCCSUN@gmail.com

Sponsorship Opportunities Now Available!

FLSCC Membership Time to Renew!

If you have not renewed your membership please visit www.scconline.org and complete your renewal.
We want you to continue to be an active part of the Society of Cosmetic Chemists Florida Chapter!

Contents

Pgs 1-2 Chapter Highlights/Officers
Pg 3 Upcoming Events
Pg 3 2019 FLSCC NL Advertising Campaign
Pg 4-6 Sponsorship Sunscreen Symposium
Pg 7-12 Technical Article
Pg 14-15 SCC Info
2018/2019 Florida Chapter Officers

Marisa Bailey-Furlonge
Chair

Peter Toth
Chair-Elect

Vanessa Thomas
Secretary

Stephen Dawes
Treasurer

Arthur Joseph Vallejo
Treasurer Elect

Dennis Abbeduto
Area IV Director

Stanley Milstein, Ph.D.
Area IV Director

Newsletter Editor
Tania Robles
FLSCC Upcoming Events

Chapter Meeting - February 21, 2019
Ft. Lauderdale, Fl (Venue TBD)

Chapter Meeting - April 25, 2019
The Columbia Restaurant, Tampa, Fl

Sunscreen Symposium - September 12th -14th
Disney’s Yacht Club Resort

2019 FLSCC Newsletter Advertising Campaign

It is time for updating or creating your ad for the 2019 FLSCC Newsletter. There will be at least 6 newsletters published in 2019. We would like to get all revised or new ads by December 31, 2018, in time for the January 2019 Newsletter. If you would like to advertise in 2019, please call or email Stephen Dawes p: 954-433-0618, ext. 22 Email: Stephen@aigtechnologies.net

Advertisement Info

We offer two sizes – 2” x 2” for $ 550 and 2” x 4” for $ 900 (can be portrait or landscape)

Pricing is for a full year and we do not prorate or pick up new advertisers mid-year.

Our distribution is 100% electronic, so there is no cost differential for B&W versus Full Color.
A.I.G. Technologies, Inc

Manufacturing Quality Skincare, Over The Counter Drug, and Topical Rx Products
2019 Sunscreen Symposium Sponsorship Levels

“The Florida Chapter of the Society of Cosmetic Chemists would like to offer you an opportunity to sponsor our upcoming 2019 Sunscreen Symposium. The event will be held at Disney’s Yacht Club in Lake Buena Vista Florida on September 12th – 14th 2019. Historically this event draws hundreds of the Cosmetic Industry professionals and offers a great opportunity to showcase your company as a Sponsor of the event. As sponsors of the event we would also extend to you the first opportunity to contribute to the giveaways that will be added to our complementary symposium bag that is given to each symposium attendee. The Symposium will not be possible without the generous support of our sponsors and we hope that you would consider being an intricate part of this event. If you are interested in becoming a sponsor of this prestigious event please review the various sponsorship opportunities below. We hope that your company would partner with us to help make the 2019 Sunscreen Symposium a success! We thank you in advance for your support.”

Diamond Level Sponsorship $15,000
• Headliner Recognition in the Sunscreen Symposium Program
• Headliner Advertisement of Company Logo at the Registration Area of Symposium
• Complimentary Table Top Display with 4 full complimentary admissions
 • Prominent Recognition in the Florida Chapter Newsletter
• Complimentary 2x4 advertisement in the Florida Chapter Newsletter for all of 2019
• Headliner recognition on the Florida Chapter Website Sunscreen Symposium Page
 • Prominent Recognition at the Sunscreen Symposium Party

Sapphire Level Sponsorship $10,000
• Prominent Recognition in the Sunscreen Symposium Program
• Complimentary Table Top Display with 3 full complimentary admissions
• Prominent Advertisement of Company Logo at the Registration Area of Symposium
 • Prominent Recognition in the Florida Chapter Newsletter
• Complimentary 2x4 advertisement in the Florida Chapter Newsletter for all of 2019
• Prominent recognition on the Florida Chapter Website Sunscreen Symposium Page

Platinum Level Sponsorship $6000
• Prominent Recognition in the Sunscreen Symposium Program
• Complimentary Table Top Display with 2 full complimentary admissions
• Advertisement of Company Logo at the Registration Area of Symposium
 • Special Recognition in the Florida Chapter Newsletter
• Complimentary 2x2 advertisement in the Florida Chapter Newsletter for all of 2019
• Special recognition on the Florida Chapter Website Sunscreen Symposium Page

Gold Level Sponsorship $3000
• Recognition in the Sunscreen Symposium Program
 • 50% Off Table Top Display
• Advertisement of Company Logo at the Registration Area of Symposium
 • Recognition in the Florida Chapter Newsletter
• Half Price 2x2 advertisement in the Florida Chapter Newsletter for all of 2019
• Recognition on the Florida Chapter Website Sunscreen Symposium Page
2019 Sunscreen Symposium
Sponsorship Levels

Silver Level Sponsorship $1000
• Recognition in the Sunscreen Symposium Program
• Advertisement of Company Logo at the Registration Area of Symposium
• Recognition in the Florida Chapter Newsletter
• Recognition on the Florida Chapter Website Sunscreen Symposium Page

Thursday Golf Outing
• Hole Sponsor: $200 per hole
• Lunch for Golfers: Priced determined when the number of golfer is confirmed
 • Recognition in the Sunscreen Symposium Program
 • Recognition in the Florida Chapter Newsletter
 • Recognition on the Florida Chapter Website Sunscreen Symposium Page

Friday & Saturday Symposium
• Breakfast: $7500 per day
• Lunch: $9000 per day
• Recognition in the Sunscreen Symposium Program
• Recognition in the Florida Chapter Newsletter
• Recognition on the Florida Chapter Website’s Sunscreen Symposium Page

Saturday Night Party
• Game Room Sponsor: $7500
• Party Bar Sponsor: $5000 per bar – 3 Available
• Recognition in the Sunscreen Symposium Program
• Recognition in the Florida Chapter Newsletter
• Recognition on the Florida Chapter Website Sunscreen Symposium Page
Technical Article
A general formulation strategy toward long-wear color cosmetics with sebum resistance

A podium presentation at the 29th Congress of the IFSCC, Orlando, FL, 2016
ZHI LI, BARTLEY MAXON, KIMMAI NGUYEN,
MYOUNGBAE LEE, MENG GU, and PAUL PRETZER, Dow
Corning Corporate, Midland, MI

ABSTRACT
We propose a “Soft” + “Hard” formulation strategy for long-wear and sebum/oil-resistant makeup. The ratios of “Hard” nonvolatile components (e.g., resins, particulates, and solid emulsifiers) and compatible “Soft” nonvolatile components (e.g., nonvolatile oils and liquid emulsifiers) may be carefully adjusted to create desired long-wear performance and sensory. For a given formulation chassis, we recommend studying compatibility and viscoelastic profiles of blends made of “Hard” polymeric resins and “Soft” structuring polymers to gain fundamental understanding of the polymer matrix for pigment adhesion. Enhanced oil/sebum resistance may be achieved, where there is good compatibility among the “Soft” and “Hard” polymeric components and where there is considerable immiscibility between oil/sebum and each nonvolatile component. Our strategy may help promote cosmetic formulation development based on rational design and understanding interactions among components, develop novel long-wear formulation chassis, and properly evaluate emerging new technologies.

INTRODUCTION
Since the early 1990s, the product category of long-lasting facial makeup has grown from just for a few niche lines to cover mainstream mass-market offerings and many premier brands. With the selfie craze, high-definition cameras, and multimedia displays, consumers nowadays want to look flawless on social media and in person throughout the day. As a result, our industry has been investing a considerable amount of resources for technical breakthroughs at this frontier (1,2). Recent formulation advances have transformed the perception of these products from drying/tacky and paint-like sensory and appearance to that of regular makeup (1–3).

Sebum is recognized as a major cause for makeup deterioration over time. Secreted from human sebaceous glands, sebum is mainly made of triglyceride oils, fatty acids, wax, and squalene. Sebum may not only lead to uneven facial makeup application, but also excessive plasticization of cosmetic films, wetting of pigments, and weakened makeup adhesion to the skin. This can result in oily appearance, makeup shade change, and easier transfer. While there is a great amount of formulation knowledge on how to achieve water resistance and rub-off resistance, our industry has fewer technical advances in oil/sebum resistance (1–4). Previously, we developed a set of simple, semiquantitative, yet highly relevant nonhuman test methods for understanding color cosmetics’ oil resistance. Those test methods not only enabled us to make comprehensive assessments of makeup formulations’ lasting performance when exposed to oil (grease or sebum), but also helped reveal each ingredient’s subtle impact to a finish formulation’s oil resistance efficacy (4). Based on our learnings, we propose here a “Soft” + “Hard” formulation strategy toward long-wear and sebum/oil resistance. For illustration, we apply here the “Soft” + “Hard” formulation strategy to silicone-based makeup formulations.

MATERIALS AND METHODS

“SoFT” + “HARD” FORMULATION STRATEGY FOR SILICONE-BASED FORMULATIONS
To apply the “Soft” + “Hard” strategy to silicone-based formulation chassis, we created a conceptual map of silicone materials’ “hardness” and charted several types of silicone materials, including polydimethylsiloxanes, silicone resins, silicone polyethers (SPEs), silicone crosspolymers, alkylmethylsiloxanes, silicone acrylates, and silica silicate (Scheme 1). The perceived “hardness” is largely based on materials’ glass transition temperature or softening temperature. For instance, low-viscosity silicone fluids would be considered very “Soft,” while materials like commercial MQ resins with a glass transition
temperature over 200°C would be at the very “Hard” end of the conceptual map.

MATERIALS

An important type of “Soft” components we investigated are SPE fluids used for creating W/Si or W/O formulations. With typical Tg values well below -100°C, most silicone emulsifiers were placed on the “soft” end of the conceptual “hardness” map. SPEs in this study include a block copolymer with an INCI name of “Bis-Isobutyl PEG/PPG-10/7/ Dimethicone Copolymer,” two random copolymers with INCI names of “PEG/PPG19/19 Dimethicone” and “Lauryl PEG-10 Tris(trimethylsiloxy)silyl ethyl Dimethicone.” A silicone acrylate (SiAc) copolymer (INCI name: “Acrylates/Polytrimethylsiloxymethacrylate Copolymer”) was selected to illustrate a type of “Hard” silicone components. The silicone acrylate technology is currently used for long-lasting lip products and durable liquid foundations with comfortable wear. The particular silicone acrylate (Acrylates/ Polytrimethylsiloxymethacrylate Copolymer) referred to throughout this study is a brittle solid at room temperature and has a distinct melting transition with onset of ~75°C and peak at ~90°C based on differential scanning calorimetry (DSC) study. Blends of silicone acrylate and SPE at various ratios were prepared by mixing and evaporating volatile solvent. We prepared and tested two sets of simple makeup prototypes to further illustrate our “Soft” + “Hard” strategy for achieving sebum resistance. In our study, artificial sebum, a mixture of organic oils, was used (4).

METHODS AND RESULTS

Visual assessment and cross-section transmission electron microscopy (TEM) were performed to help understand compatibility between and silicone acrylate and different SPEs. After removing volatile carrier fluids, silicone acrylate and “PEG/PPG-19/19 Dimethicone” blended at 7:3 ratio formed an optically transparent plastic material. The compatibility between silicone acrylate and “PEG/PPG-19/19 Dimethicone” in the blend was further suggested by cross-section TEM (Figure 1A). No distinct phase domain was observed at 5-nm scale and above. On the contrary, silicone acrylate and “Lauryl PEG-10 Tris(trimethylsiloxy)silyl ethyl Dimethicone” blended at a 7:3 ratio formed an opaque solid. Distinct phase domains, sized from several nanometers to over 100 nm, were observed under cross-section TEM (Figure 1B). All indicate incompatibility between the two materials.

Viscoelastic properties of compatible silicone acrylate/SPE blends were further investigated. Shown in Figure 2A are temperature sweep measurements of elastic modulus (G’) of silicone acrylate (SiAc) and “PEG/PPG-19/19 Dimethicone” (an SPE) blends at different ratios. Figure 2B shows damping factor of related blends. G’ level of SiAc/SPE at a 7:3 ratio was lower than that of neat silicone acrylate at the entire temperature range tested. Also, the addition of SPE shifted the damping factor peak to a lower temperature, which is indicative that thermal transition occurred at a lower temperature. At room temperature, the blend of SiAc/SPE at a 7:3 ratio showed a significantly higher damping factor (more “viscous”) than neat silicone acrylate. Clearly, more pronounced effects were observed from the SiAc/SPE (6:4) blend. These systematic changes signify that this particular SPE worked as an effective plasticizer in the blends. DSC study (data not shown) further confirmed the SPE’s plasticization effect. For the SiAc/SPE (7:3) blend, DSC indicates a melting transition with onset of 43°C and peak at
68°C, broader and lower than that of neat silicone acrylate.

Figure 1. Cross-section TEM images of blends. (A) A blend of silicone acrylate and “PEG/PPG-19/19 Dimethicone” at 7:3 ratio. (B) A blend of silicone acrylate and “Lauryl PEG-10 Tri(trimethylsiloxy)silylethyl Dimethicone” at 7:3 ratio.

Cracking and flexibility of color cosmetic films containing silicone acrylate/SPE blends were further investigated. For a formulation using silicone acrylate as the sole polymeric nonvolatile, dried film exhibited visible cracks (data not shown). On the other hand, the formulation with a combination of nonvolatile silicone acrylate and “Bis-Isobutyl PEG/PPG-10/7/Dimethicone Copolymer” (an SPE) at 7:3 wt ratio yielded a dry film exhibiting no observable cracks (data not shown). Stretching test was conducted by drying these prototype formulations on a film...
exible rubber band. After the rubber band was elongated, films were assessed for cracking. Figure 4 showed that films with an adequate fraction of SPE did not crack under the test condition, suggesting more exible than films based on lower fractions of SPE.

Sebum/oil abrasion test was conducted to understand a makeup film’s rub-off resistance in the present of sebum (3). Figure 5A shows compositions of anhydrous makeup prototypes containing blends of silicone acrylate and SPE at different “Hard” to “Soft” ratios. After dried on collagen, cosmetic films were subjected to abrasion test. Figure 5B shows a digital camera image of both abrasion cloths and cosmetic films after given 100 rubs. The top row shows, in duplicate, abrasion cloth and cosmetic films after abrasion without artificial sebum treatment. The bottom row shows, in duplicate, abrasion cloths and cosmetic films after abrasion with sebum pretreatment. Figure 5C shows abrasion clothes’ color increase after 100 rubs as measured by colorimeter. Figure 5D shows makeup films’ color loss as measured by colorimeter. With the understanding that sebum is a culprit leading to poor wear performance of color cosmetics, abrasion testing of the substrate pretreated with artificial sebum oil confirmed more color transfer than without sebum. Importantly, we found ideal “Hard” to “Soft” ratios may exist for improved performance. When higher levels of the SPE (soft component) were incorporated, considerable rub-off and transfer were observed, especially in the presence of sebum. On the other end, at very high ratios of silicone acrylate (hard) to SPE (soft), shown here 10:0 (all silicone acrylate), color films are brittle and can be chipped off through abrasions.
Contact transfer test was conducted to understand the extent of pigment transfer from color cosmetic films to white substrates upon contact (3). Shown in Figure 6 are four water-in-oil liquid foundation prototypes with the same amount of “Hard” silicone acrylate and the same “Hard” to “Soft” ratio (3:1), varying only silicone emulsifiers (all fluids). Emulsifiers A and B both showed incompatibility with silicone acrylate and decent miscibility with artificial sebum oil (data not shown). Emulsifiers C and D both showed good compatibility with the silicone acrylate; however, Emulsifier D showed the highest degree of immiscibility with artificial sebum oil. For the test, liquid foundations were coated and dried on nylon filter papers. In some cases, cosmetic films dried on filter papers were impregnated with artificial sebum prior to the test. Figure 6B shows a digital camera image taken after contact transfer tests with both cosmetic films and pigment traces transferred. As shown in the top row, without sebum, there is no observable pigment transfer for all four foundation films. However, shown in the bottom row of Figure 6B, with a sebum pretreatment, four formulations showed different degrees of pigment transfer, which were documented by colorimeter measurement (see Figure 6C). Emulsifier D, having both good compatibility with the silicone acrylate and the highest degree of immiscibility with artificial sebum oil, led to formulation with best sebum resistance.

DISCUSSION

While there are different technical approaches toward long-lasting performance, today’s prevailing technologies in color cosmetics are based on using various polymeric “film formers.” Virtually, every color cosmetic currently on the market with “long lasting” claims contains at least one organic or silicone “film former,” such as PVP-type copolymers, acrylate-type copolymers, polyethylene, silicone MQ resins, silicone resin waxes, and silicone acrylates (1–2). Despite all the developments, to date, no general formulation guidelines have been clearly articulated to achieve the benefits of long wear. Regarding silicone-based technologies, over the past decades, researchers from Revlon, Procter & Gamble, L’Oreal, Estee Lauder, Shiseido, and others adopted a variety of silicone materials for long-wear color cosmetics, including silicone gums, silicone waxes, silicone resins, silicone polyamide, and silicone pressure-sensitive adhesives (5–9). However, other than a vague concept of “MQ + plasticizer,” fundamental understandings and formulation knowledge remain in the minds of very few skilled cosmetic chemists (1–3).
For instance, for prototypes in Figures 5A and 6A, upon application on skin and evaporation of volatile fluids, we hypothesized that the combination of SPE and silicone acrylate are the main components of a polymer matrix that is responsible for adhering pigments onto the skin. The particular silicone acrylate studied is a hard and relatively brittle material in its neat form. Our results suggest that the silicone acrylate is able to form compatible blends with several SPEs, with good miscibility at polymer chain segment level. Rheology and DSC studies show that a “soft” SPE (compatible with silicone acrylate) is able to lower the blends’ glass transition temperature, making it an effective plasticizer of silicone acrylate. Conversely, the silicone acrylate is able to raise the glass transition temperature, making silicone acrylate an effective “tackifier” for compatible SPE. In a sense, consistent to our film properties and fl exibility studies, the SPE may effectively mobilize the “hard” acrylate segments, increasing fl exibility to the fi lm. Likewise, the “hard” acrylate segment can effectively “toughen” the “soft” SPE, introducing cohesion strength to the film. At right ratios, these combined polymeric nonvolatiles may form an optimized matrix to “glue” pigment particles on the skin. Insights around the intrinsic properties of a given pigment “glue” blend can be gained through its viscoelastic profile. Consistently with the understanding that sebum negatively impacts long-wear performance of color cosmetics, our studies confi rmed that in vitro testings with artifi cial sebum oil pretreatment lead to more color transfer than without sebum pretreatment. Perspiration and sebum may alter a blend of nonvolatile pigments’ “gluing” effi cacy. If sebum is miscible with nonvolatile components, it eff ectsly reduces the “Hard” to “Soft” ratio, further plasticizes the blend of nonvolatiles, and results in a “softer” and more “fi luidic” matrix on skin. This leads to weakened pigment binding to skin, easier removal upon rub-off, and more color transfer upon contact. On the other hand, if each component of a nonvolatile blend can be carefully selected with reduced sebum miscibility, the nonvolatile matrix formed for pigment binding may be less prone to sebum’s plasticization, thus may reduce the detrimental eff ects of sebum. Based on all our learnings, we developed a systematic formulation strategy for longer wear and sebum resistance benefi ts.

REFERENCES

(1) S. X. Lu, The science behind transfer-resistant color cosmetics, a podium presentation at Society of Cosmetic Chemists’ 69th Annual Scientifi c Meeting (2014).

(2) R. Lockhead and M. Lockhead, Two decades of transfer-resistant lipstick, Cosm. & Toll., 130, 18–29 (2015).

Chapter Links

California Chapter’s Events

Michigan Chapter’s Events

Ontario Chapter’s Events

Carolina Chapter’s Events

Mid-Atlantic Chapter’s Events

Quebec Chapter’s Events

Connecticut Chapter’s Events

Midwest Chapter’s Events

Southeast Chapter’s Events

Lake Erie Chapter’s Events

New England Chapter’s Events

Southwest Chapter’s Events

Long Island Chapter’s Events

New York Chapter’s Events

St. Louis Chapter’s Events

Ohio Valley Chapter’s Events

Twin Cities Chapter’s Events
SOCIETY OF COSMETIC CHEMISTS

JOIN COSMETIC AND PERSONAL CARE PROFESSIONALS FROM 37 COUNTRIES THAT RELY ON THE SCC, THE OLDEST AND LARGEST NON-PROFIT ORGANIZATION FOCUSED ON ADVANCING COSMETIC SCIENCE EDUCATION

5,000 MEMBERS CAN’T BE WRONG!

MEMBER BENEFITS

- Subscription to the Journal of Cosmetic Science, our flagship publication, published six times per year

- Discounts on Continuing Education courses, which further improve the qualifications of cosmetic scientists by setting high ethical, professional and educational standards

- Discounted registration to the SCC Annual Meeting

- Opportunities to participate in a range of professional and social events at 19 affiliated Chapters

- Full online access to the searchable digital library of every issue of the Journal

- AND MORE!

www.scconline.org/membership